Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[[diaguatri- μ_4 -succinatodineodymium(III)] monohydrate]

Yong-Ke He,^a Xiao-Fang Wang,^b Li-Tian Zhang,^a Zheng-Bo Han^a* and Seik Weng Ng^c

^aCollege of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China, ^bDepartment of Pharmaceutical Engineering, Liaoning University, Shenyang 110036, People's Republic of China, and CDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: ceshzb@lnu.edu.cn

Received 11 October 2007; accepted 9 November 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.006 Å; R factor = 0.024; wR factor = 0.066; data-to-parameter ratio = 14.1.

Carboxylate bridging in the title neodymium(III) coordination polymer, $\{[Nd_2(C_4H_4O_4)_3(H_2O)_2] \cdot H_2O\}_n$, leads to a threedimensional network architecture. One of the two independent succinate groups lies on a centre of inversion whereas the other lies on a general position; both engage in μ_4 -bridging. The motif is consolidated by hydrogen bonds that involve the coordinated water molecule. The uncoordinated water molecule, which lies on a twofold rotation axis, is only weakly hydrogen bonded to the network. The Nd^{III} atom shows tricapped trigonal prismatic coordination.

Related literature

For the structure of $[Ho_2(C_4H_4O_4)_3(H_2O)_2 \cdot H_2O]$, see: Bernini et al. (2007).

Experimental

Crystal data $[Nd_2(C_4H_4O_4)_3(H_2O)_2] \cdot H_2O$ $M_r = 690.74$ Monoclinic, C2/c a = 19.966 (4) Å b = 7.8761 (9) Å c = 13.9861 (8) Å $\beta = 120.81 (1)^{\circ}$

V = 1889.0 (5) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 5.51 \text{ mm}^{-1}$ T = 295 (2) K 0.37 \times 0.35 \times 0.23 mm $R_{\rm int} = 0.019$

1859 independent reflections

3 standard reflections every 97 reflections intensity decay: <1%

1759 reflections with $I > 2\sigma(I)$

Data collection

Siemens P4 diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.194, \ T_{\max} = 0.364$
(expected range = $0.150-0.281$)
2342 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.024$ 132 parameters $wR(F^2) = 0.066$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.71 \text{ e} \text{ Å}^{-3}$ S = 1.03 $\Delta \rho_{\rm min} = -1.53 \text{ e } \text{\AA}^{-3}$ 1859 reflections

Table 1

Selected bond lengths (Å).

Nd1-O1	2.486 (3)	Nd1-O5	2.51	19 (3)
Nd1-O2 ⁱ	2.363 (3)	Nd1-O6	2.50)8 (2)
Nd1-O3 ⁱⁱ	2.572 (3)	Nd1-O6 ⁱ	2.45	55 (2)
Nd1-O3 ⁱⁱⁱ	2.463 (2)	Nd1 - O1W	2.54	40 (3)
Nd1-O4 ⁱⁱ	2.537 (3)			
Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1.$	$-x + \frac{1}{2}, y + \frac{1}{2},$	$-z + \frac{1}{2};$ (ii)	$x, -y + 1, z - \frac{1}{2};$	(iii)

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O1W-H12\cdots O1^{iv}\\ O1W-H11\cdots O4^{i} \end{array}$	0.85 0.85	2.06 1.90	2.899 (4) 2.709 (4)	168 158
	. 1 . 1	. 1. (1.) 1	1 . 1	

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iv) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: XSCANS (Bruker, 2000); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2007).

The authors thank the Program for Liaoning Excellent Talents in Liaoning University (grant No. RC-05-11) and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2484).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bernini, M.-C., Brusau, E.-V., Narda, G.-E., Echeverria, G.-E., Pozzi, C.-G., Punte, G. & Lehmann, C.-W. (2007). Eur. J. Inorg. Chem. pp. 684-693. Bruker (2000). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-
- 359
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Westrip, S. P. (2007). publCIF. In preparation.

supplementary materials

Acta Cryst. (2007). E63, m3019 [doi:10.1107/S1600536807057303]

Poly[[diaquatri- μ_4 -succinato-dineodymium(III)] monohydrate]

Y.-K. He, X.-F. Wang, L.-T. Zhang, Z.-B. Han and S. W. Ng

Comment

The holonium ion reacts with succinic acid under hydrothermal conditions to form polymeric $[Ho_2(C_4H_4O_4)_3(H_2O)_4 \cdot 6H_2O]$ and $[Ho_2(C_4H_4O_4)_3(H_2O)_2 \cdot H_2O]$ (Bernini *et al.*, 2007). The latter compound is a dihydrate. With the neodymium cation in place of the holonium cation, the reaction yields the title compound, which has the corresponding formulation.

The title compound is polymeric owing to carboxylate bridging; the geometry of the metal atom is a tricapped trigonal prism (Fig. 2).

Experimental

Neodymium nitrate hexahydrate (0.4 mmol, 0.175 g), succinic acid (1 mmol, 0.118 g), sodium hydroxide (1 mmol, 0.04 g) and water (10 ml) were placed in a 23-ml Teflon-lined Parr bomb. The bomb was heated at 453 K for 3 d and then cooled to room temperature at a rate of 5 K h⁻¹ (yield 70%). CH&N elemental analysis for $C_{12}H_{18}Nd_2O_{15}$ (found%/calc%): C 20.79/20.87, H 2.57/2.63.

Refinement

The methylene H atoms were placed at calculated positions (C—H = 0.97 Å) in the riding model approximation, with their U_{iso} values set to 1.2 times U_{eq} of the parent atoms. The H atoms of O1w were placed in chemically sensible positions on the basis of hydrogen bonds but were not refined (O—H = 0.85 Å). The H atom on O2w, which lies on a twofold axis, was similarly placed; however, O2w is only a weak hydrogen bond donor to O1w. The final difference Fourier map had a deep hole in the vicinity of Nd1 but was otherwise featureless.

Figures

Fig. 1. Part of the polymeric structure of the title compound. Displacement ellipsoids are drawn at the 70% probability level, and H atoms as spheres of arbitrary radii. Symmetry codes are given in Table 1.

Fig. 2. Geometry of the neodymium atom in the title compound.

Poly[[diaquatri-µ4-succinato-dineodymium(III)] monohydrate]

Crystal data	
$[Nd_2(C_4H_4O_4)_3(H_2O)_2] \cdot H_2O$	$F_{000} = 1320$
$M_r = 690.74$	$D_{\rm x} = 2.429 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 28 reflections
<i>a</i> = 19.966 (4) Å	$\theta = 5.2 - 12.4^{\circ}$
b = 7.8761 (9) Å	$\mu = 5.51 \text{ mm}^{-1}$
c = 13.9861 (8) Å	T = 295 (2) K
$\beta = 120.81 \ (1)^{\circ}$	Block, purple
V = 1889.0 (5) Å ³	$0.37 \times 0.35 \times 0.23 \text{ mm}$
Z = 4	

Data collection

Siemens P4 diffractometer	$R_{\rm int} = 0.019$
Radiation source: medium-focus sealed tube	$\theta_{\rm max} = 26.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.4^{\circ}$
T = 295(2) K	$h = -1 \rightarrow 24$
ω –2 θ scans	$k = -1 \rightarrow 9$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = -17 \rightarrow 15$
$T_{\min} = 0.194, \ T_{\max} = 0.364$	3 standard reflections
2342 measured reflections	every 97 reflections
1859 independent reflections	intensity decay: <1%
1759 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.024$	H-atom parameters constrained
$wR(F^2) = 0.066$	$w = 1/[\sigma^2(F_o^2) + (0.0385P)^2 + 5.3046P]$ where $P = (F_o^2 + 2F_c^2)/3$

<i>S</i> = 1.03	$(\Delta/\sigma)_{max} = 0.001$
1859 reflections	$\Delta \rho_{max} = 0.71 \text{ e} \text{ Å}^{-3}$
132 parameters	$\Delta \rho_{min} = -1.53 \text{ e } \text{\AA}^{-3}$
Drimony atom site locations structure inversiont direct	

Primary atom site location: structure-invariant direct Extinction correction: none

Fractional atomic coordinate	s and isotropic of	r equivalent isotropic	e displacement	parameters $(Å^2)$
------------------------------	--------------------	------------------------	----------------	--------------------

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Nd1	0.269282 (10)	0.78357 (2)	0.230560 (14)	0.01147 (10)
01	0.1961 (2)	0.7564 (4)	0.3297 (3)	0.0262 (7)
O2	0.17965 (17)	0.4808 (3)	0.3430 (2)	0.0255 (6)
O3	0.18625 (14)	0.4811 (3)	0.6347 (2)	0.0201 (5)
O4	0.17029 (17)	0.2677 (3)	0.5265 (2)	0.0201 (6)
O5	0.40816 (16)	0.7251 (3)	0.3807 (2)	0.0217 (6)
O6	0.32606 (13)	0.5160 (3)	0.3399 (2)	0.0181 (5)
O1w	0.33554 (16)	0.6094 (3)	0.1495 (2)	0.0234 (6)
H11	0.3218	0.6460	0.0848	0.035*
H12	0.3223	0.5059	0.1454	0.035*
O2w	0.5000	0.5101 (10)	0.2500	0.079 (2)
H21	0.5203	0.5710	0.2206	0.118*
C1	0.1697 (2)	0.6327 (4)	0.3572 (3)	0.0167 (7)
C2	0.1225 (2)	0.6721 (5)	0.4117 (3)	0.0200 (7)
H2A	0.0792	0.7448	0.3624	0.024*
H2B	0.1551	0.7350	0.4798	0.024*
C3	0.0903 (2)	0.5144 (5)	0.4397 (3)	0.0184 (7)
H3A	0.0508	0.5498	0.4563	0.022*
H3B	0.0655	0.4409	0.3750	0.022*
C4	0.15256 (18)	0.4147 (5)	0.5375 (3)	0.0142 (6)
C5	0.39642 (19)	0.5743 (5)	0.3931 (3)	0.0158 (7)
C6	0.4604 (2)	0.4567 (5)	0.4686 (3)	0.0259 (8)
H6A	0.4630	0.3639	0.4250	0.031*
H6B	0.4483	0.4088	0.5219	0.031*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Nd1	0.01244 (14)	0.00748 (15)	0.01412 (14)	0.00056 (6)	0.00653 (10)	0.00027 (6)
01	0.0398 (18)	0.0149 (11)	0.0377 (18)	-0.0004 (13)	0.0298 (16)	0.0011 (13)
02	0.0356 (15)	0.0124 (12)	0.0414 (16)	0.0014 (12)	0.0290 (14)	-0.0003 (12)
O3	0.0197 (12)	0.0181 (13)	0.0159 (12)	0.0023 (11)	0.0043 (10)	-0.0034 (10)
O4	0.0293 (15)	0.0117 (12)	0.0159 (13)	-0.0006 (11)	0.0091 (12)	0.0003 (10)
O5	0.0138 (13)	0.0126 (13)	0.0298 (15)	-0.0002 (10)	0.0046 (12)	0.0014 (10)
O6	0.0103 (11)	0.0192 (13)	0.0193 (11)	-0.0015 (10)	0.0035 (10)	0.0041 (10)
O1w	0.0341 (15)	0.0168 (13)	0.0270 (13)	0.0020 (12)	0.0213 (12)	0.0018 (11)
O2w	0.053 (3)	0.094 (5)	0.087 (5)	0.000	0.033 (3)	0.000
C1	0.0182 (17)	0.0142 (16)	0.0167 (16)	0.0018 (13)	0.0082 (14)	0.0006 (13)
C2	0.0279 (19)	0.0160 (16)	0.0225 (18)	0.0049 (16)	0.0174 (16)	0.0037 (15)

supplementary materials

C3 C4 C5 C6	0.0148 (15) 0.0118 (15) 0.0156 (16) 0.0139 (18)	0.0210 (17) 0.0158 (16) 0.0173 (16) 0.0179 (18)	0.0168 (16) 0.0163 (16) 0.0132 (15) 0.034 (2)	-0.0009 (14) -0.0045 (14) -0.0016 (14) -0.0009 (16)	0.0062 (13) 0.0081 (13) 0.0064 (13) 0.0033 (16)	0.0010 (14) 0.0010 (14) -0.0024 (14) 0.0052 (16)
Geometric paran	neters (Å, °)					
Nd1—O1		2.486 (3)	06—	-C5	1.291	(4)
Nd1—O2 ⁱ		2.363 (3)	06—	-Nd1 ^{iv}	2.455	(2)
Nd1—O3 ⁱⁱ		2.572 (3)	O1w	—H11	0.85	
Nd1—O3 ⁱⁱⁱ		2.463 (2)	O1w	—H12	0.85	
Nd1—O4 ⁱⁱ		2.537 (3)	O2w	—H21	0.86	
Nd1—O5		2.519 (3)	C1-	-C2	1.518	(5)
Nd1—O6		2.508 (2)	C2—	-C3	1.538	(5)
Nd1—O6 ⁱ		2.455 (2)	C2—	-H2A	0.97	
Nd1—O1w		2.540 (3)	C2—	-H2B	0.97	
O1—C1		1.258 (5)	С3—	-C4	1.513	(5)
O2—C1		1.245 (4)	С3—	-H3A	0.97	
O2—Nd1 ^{1V}		2.363 (3)	C3—	-H3B	0.97	
O3—C4		1.278 (4)	C4—	-Nd1 ^v	2.952	(3)
O3—Nd1 ⁱⁱⁱ		2.463 (2)	C5—	-C6	1.491	(5)
O3—Nd1 ^v		2.572 (3)	С6—	-C6 ^{vi}	1.522	(7)
O4—C4		1.243 (4)	С6—	-H6A	0.97	
O4—Nd1 ^v		2.537 (3)	С6—	-H6B	0.97	
O5—C5		1.240 (4)				
O2 ⁱ —Nd1—O6 ⁱ		75.74 (9)	C4—	-O4—Nd1 ^v	96.7 (2)
$O2^{i}$ —Nd1—O3 ⁱⁱⁱ		76.80 (9)	С5—	-O5—Nd1	94.9 (2)
O6 ⁱ —Nd1—O3 ⁱⁱⁱ		69.35 (9)	С5—	-O6—Nd1 ^{iv}	152.6	(2)
O2 ⁱ —Nd1—O1		143.84 (10)	С5—	-O6—Nd1	94.1 (2)
O6 ⁱ —Nd1—O1		74.43 (10)	Nd1 ⁱ	v—O6—Nd1	111.5	0 (9)
O3 ⁱⁱⁱ —Nd1—O1		73.88 (10)	Nd1-		109.5	
O2 ⁱ —Nd1—O6		131.05 (9)	Nd1-		109.5	
O6 ⁱ —Nd1—O6		152.50 (3)	H11-		109.5	
O3 ⁱⁱⁱ —Nd1—O6		107.01 (8)	02—	-C101	124.7	(3)
01—Nd1—06		78.39 (9)	02—	-C1—C2	117.9	(3)
O2 ⁱ —Nd1—O5		86.97 (10)	01–	-C1—C2	117.4	(3)
O6 ⁱ —Nd1—O5		140.11 (8)	C1-	-C2—C3	114.2	(3)
$O3^{iii}$ —Nd1—O5		71.83 (8)	C1—	-C2—H2A	108.7	
01—Nd1—05		103.28 (11)	С3—	-C2—H2A	108.7	
O6—Nd1—O5		51.47 (8)	C1—	-C2—H2B	108.7	
O2 ⁱ —Nd1—O4 ⁱⁱ		82.89 (10)	С3—	-C2—H2B	108.7	
O6 ⁱ —Nd1—O4 ⁱⁱ		70.72 (8)	H2A	—С2—Н2В	107.6	
O3 ⁱⁱⁱ —Nd1—O4 ⁱⁱ		138.47 (8)	C4—	-C3—C2	113.1	(3)
01—Nd1—O4 ⁱⁱ		105.77 (11)	C4—	-С3—НЗА	109.0	

O6—Nd1—O4 ⁱⁱ	113.63 (8)	С2—С3—НЗА	109.0
O5—Nd1—O4 ⁱⁱ	143.08 (10)	C4—C3—H3B	109.0
O2 ⁱ —Nd1—O1w	73.82 (9)	С2—С3—Н3В	109.0
O6 ⁱ —Nd1—O1w	134.24 (8)	НЗА—СЗ—НЗВ	107.8
O3 ⁱⁱⁱ —Nd1—O1w	133.01 (9)	O4—C4—O3	119.0 (3)
O1—Nd1—O1w	142.34 (9)	O4—C4—C3	121.7 (3)
O6—Nd1—O1w	69.04 (8)	O3—C4—C3	119.3 (3)
O5—Nd1—O1w	70.79 (9)	O4—C4—Nd1 ^v	58.60 (18)
O4 ⁱⁱ —Nd1—O1w	72.30 (9)	O3—C4—Nd1 ^v	60.36 (18)
O2 ⁱ —Nd1—O3 ⁱⁱ	127.75 (9)	C3—C4—Nd1 ^v	177.8 (2)
O6 ⁱ —Nd1—O3 ⁱⁱ	103.59 (8)	O5—C5—O6	119.2 (3)
O3 ⁱⁱⁱ —Nd1—O3 ⁱⁱ	153.22 (2)	O5—C5—C6	122.6 (3)
O1—Nd1—O3 ⁱⁱ	79.34 (9)	O6—C5—C6	118.1 (3)
O6—Nd1—O3 ⁱⁱ	66.82 (8)	O5—C5—Nd1	59.91 (19)
O5—Nd1—O3 ⁱⁱ	115.27 (8)	O6—C5—Nd1	59.57 (17)
O4 ⁱⁱ —Nd1—O3 ⁱⁱ	50.33 (8)	C6—C5—Nd1	175.1 (3)
O1w—Nd1—O3 ⁱⁱ	70.94 (9)	C5—C6—C6 ^{vi}	113.0 (4)
C1—O1—Nd1	134.0 (3)	С5—С6—Н6А	109.0
C1—O2—Nd1 ^{iv}	147.2 (2)	C6 ^{vi} —C6—H6A	109.0
C4—O3—Nd1 ⁱⁱⁱ	155.3 (2)	С5—С6—Н6В	109.0
C4—O3—Nd1 ^v	94.0 (2)	C6 ^{vi} —C6—H6B	109.0
Nd1 ⁱⁱⁱ —O3—Nd1 ^v	109.12 (9)	Н6А—С6—Н6В	107.8
O2 ⁱ —Nd1—O1—C1	175.0 (3)	O6 ⁱ —Nd1—O6—Nd1 ^{iv}	60.36 (18)
O6 ⁱ —Nd1—O1—C1	139.6 (4)	O3 ⁱⁱⁱ —Nd1—O6—Nd1 ^{iv}	138.18 (10)
O3 ⁱⁱⁱ —Nd1—O1—C1	-147.9 (4)	O1—Nd1—O6—Nd1 ^{iv}	69.23 (11)
O6—Nd1—O1—C1	-36.2 (4)	O5—Nd1—O6—Nd1 ^{iv}	-173.16 (16)
O5—Nd1—O1—C1	-81.6 (4)	O4 ⁱⁱ —Nd1—O6—Nd1 ^{iv}	-33.06 (13)
O4 ⁱⁱ —Nd1—O1—C1	75.3 (4)	O1w—Nd1—O6—Nd1 ^{iv}	-91.53 (11)
O1w—Nd1—O1—C1	-6.0 (5)	O3 ⁱⁱ —Nd1—O6—Nd1 ^{iv}	-14.02 (9)
O3 ⁱⁱ —Nd1—O1—C1	32.1 (4)	C5—Nd1—O6—Nd1 ^{iv}	-169.9 (2)
C5—Nd1—O1—C1	-58.6 (4)	C4 ⁱⁱ —Nd1—O6—Nd1 ^{iv}	-23.57 (11)
C4 ⁱⁱ —Nd1—O1—C1	53.9 (4)	Nd1 ^{iv} —O2—C1—O1	-4.1 (8)
Nd1 ^{iv} —Nd1—O1—C1	-2.3 (3)	Nd1 ^{iv} —O2—C1—C2	176.0 (3)
O2 ⁱ —Nd1—O5—C5	-148.6 (2)	Nd1—O1—C1—O2	4.1 (6)
O6 ⁱ —Nd1—O5—C5	147.99 (19)	Nd1—O1—C1—C2	-176.0 (3)
O3 ⁱⁱⁱ —Nd1—O5—C5	134.3 (2)	O2—C1—C2—C3	-1.8 (5)
O1—Nd1—O5—C5	66.5 (2)	O1—C1—C2—C3	178.3 (3)
O6—Nd1—O5—C5	3.36 (19)	C1—C2—C3—C4	72.9 (4)
O4 ⁱⁱ —Nd1—O5—C5	-74.7 (3)	Nd1 ^v O4C4O3	0.5 (3)
O1w—Nd1—O5—C5	-74.7 (2)	Nd1 ^v	-177.4 (3)
O3 ⁱⁱ —Nd1—O5—C5	-17.9 (3)	Nd1 ⁱⁱⁱ —O3—C4—O4	159.2 (4)

supplementary materials

-40.4 (3)	Nd1 ^v —O3—C4—O4	-0.5 (3)
-0.4 (2)	Nd1 ⁱⁱⁱ —O3—C4—C3	-22.8 (7)
35.2 (2)	Nd1 ^v —O3—C4—C3	177.4 (3)
-129.7 (2)	Nd1 ⁱⁱⁱ —O3—C4—Nd1 ^v	159.8 (6)
-51.89 (19)	C2—C3—C4—O4	-115.1 (4)
-120.8 (2)	C2—C3—C4—O3	67.0 (4)
-3.23 (19)	Nd1	-5.9 (3)
136.87 (19)	Nd1	175.1 (3)
78.41 (19)	Nd1 ^{iv} —O6—C5—O5	165.2 (3)
155.9 (2)	Nd1	5.9 (3)
146.4 (2)	Nd1 ^{iv} —O6—C5—C6	-15.7 (6)
169.9 (2)	Nd1	-175.0 (3)
-134.70 (11)		
	-40.4 (3) -0.4 (2) 35.2 (2) -129.7 (2) -51.89 (19) -120.8 (2) -3.23 (19) 136.87 (19) 78.41 (19) 155.9 (2) 146.4 (2) 169.9 (2) -134.70 (11)	-40.4 (3)Nd1 ^v -O3-C4-O4 $-0.4 (2)$ Nd1 ⁱⁱⁱ -O3-C4-C3 $35.2 (2)$ Nd1 ^v -O3-C4-C3 $-129.7 (2)$ Nd1 ⁱⁱⁱ -O3-C4-Nd1 ^v $-51.89 (19)$ C2-C3-C4-O4 $-120.8 (2)$ C2-C3-C4-O3 $-3.23 (19)$ Nd1-O5-C5-O6 $136.87 (19)$ Nd1-O5-C5-O6 $78.41 (19)$ Nd1 ^{iv} -O6-C5-O5 $155.9 (2)$ Nd1-O6-C5-O5 $146.4 (2)$ Nd1 ^{iv} -O6-C5-C6 $146.4 (2)$ Nd1 ^{iv} -O6-C5-C6 $-134.70 (11)$ Valie

Symmetry codes: (i) -*x*+1/2, *y*+1/2, -*z*+1/2; (ii) *x*, -*y*+1, *z*-1/2; (iii) -*x*+1/2, -*y*+3/2, -*z*+1; (iv) -*x*+1/2, *y*-1/2, -*z*+1/2; (v) *x*, -*y*+1, *z*+1/2; (vi) -*x*+1, -*y*+1, -*z*+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
O1W—H12···O1 ^{iv}	0.85	2.06	2.899 (4)	168
O1W—H11···O4 ⁱ	0.85	1.90	2.709 (4)	158
Symmetry codes: (iv) $-x+1/2$, $y-1/2$, $-z+1/2$; (i) $-x+$	1/2, y+1/2, -z+1/2.			

sup-6

Fig. 1

